Advertisements
Advertisements
प्रश्न
If the function f (x) is continuous in the interval [-2, 2],find the values of a and b where
`f(x)=(sinax)/x-2, for-2<=x<=0`
`=2x+1, for 0<=x<=1`
`=2bsqrt(x^2+3)-1, for 1<x<=2`
उत्तर
Since the function f (x) is continuous in the interval [-2,2]
f is continuous at in x = 0 and x = 1
(i) continuity at x = 0
`lim_(x->0)f(x)=lim_(x->0)((sinax)/x-2)`
`=lim_(x->0)((sinax)/(ax)a-2)`
=a(1)-2
=a-2
f (x)= 2x +1, for 0<= x <=1 ...(i)
f(0)=2(0)+1=1
f is continuous at x=0
`lim_(x->0^-)f(x)=f(0)`
a-2=1
a=3
(ii) Continuity at x = 1
From (i), f(1)=3
`lim_(x->1)f(x)=lim_(x->1^+)(2bsqrt(x^2+3)-1)`
`=2blim_(x->1)sqrt(x^2+3)-1`
`=2bsqrt(1+3)-1=4b-1`
f is continuous at x = 1
`lim_(x->1)f(x)=f(1)`
4b-1=3
4b=4
b=1
shaalaa.com
Definition of Continuity - Continuity in Interval - Definition
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?