हिंदी

X 2 D Y D X = X 2 − 2 Y 2 + X Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

उत्तर

We have, 
\[ x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - 2 y^2 + xy}{x^2}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - 2 v^2 x^2 + x^2 v}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 1 - 2 v^2 + v\]
\[ \Rightarrow x\frac{dv}{dx} = 1 - 2 v^2 \]
\[ \Rightarrow \frac{1}{1 - 2 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 - 2 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1^2 - \left( \sqrt{2}v \right)^2} = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2\sqrt{2}}\log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = 2\sqrt{2}\log \left| x \right| + 2\sqrt{2} \log C\]
\[ \Rightarrow \log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = \log \left| \left( Cx \right)^{2\sqrt{2}} \right|\]
\[ \Rightarrow \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} = \left( Cx \right)^{2\sqrt{2}} \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \frac{x + \sqrt{2}y}{x - \sqrt{2}y} = \left( Cx \right)^{2\sqrt{2}} \]
\[\text{ Hence, }\frac{x + \sqrt{2}y}{x - \sqrt{2}y} = \left( Cx \right)^{2\sqrt{2}}\text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 8 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

(x + 2y) dx − (2x − y) dy = 0


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


The solution of `dy/dx + x^2/y^2 = 0` is ______


`xy dy/dx  = x^2 + 2y^2`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×