English

Solve the Following Differential Equation : ( √ 1 + X 2 + Y 2 + X 2 Y 2 ) D X + X Y D Y = 0 . - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].

Solution

\[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{1 + x^2 + y^2 + x^2 y^2}}{xy}\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right) + y^2 \left( 1 + x^2 \right)}}{xy}\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right)\left( 1 + y^2 \right)}}{xy}\]

\[ \Rightarrow \frac{y}{\sqrt{1 + y^2}}dy = - \frac{\sqrt{1 + x^2}}{x}dx\]

\[ \Rightarrow \left( 1 + y^2 \right)^{- \frac{1}{2}} ydy = - \frac{\sqrt{1 + x^2}}{x}dx\]

Integrating both sides, we get

\[\frac{1}{2}\int \left( 1 + y^2 \right)^{- \frac{1}{2}} 2ydy = - \int\frac{\sqrt{1 + x^2}}{x}dx\]

\[ \Rightarrow \sqrt{1 + y^2} = - \int\frac{\sqrt{1 + x^2}}{x}dx . . . . . \left( 1 \right) \left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]

\[\text { Let} I_1 = \int\frac{\sqrt{1 + x^2}}{x}dx\]

Put x = tanθ

\[\Rightarrow\] dx = sec2θdθ

\[\therefore I_1 = \int\frac{\sqrt{1 + \tan^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]

\[ = \int\frac{\sqrt{\sec^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]

\[ = \int\frac{\sec^3 \theta}{\tan\theta}d\theta\]

\[ = \int\frac{1}{\sin\theta \cos^2 \theta}d\theta\]

\[ = \int\frac{\sin^2 \theta + \cos^2 \theta}{\sin\theta \cos^2 \theta}d\theta\]

\[ = \int\tan\theta\sec\theta d\theta + \int\cos ec\theta d\theta\]

\[ = \sec\theta + \log\left( \cos ec\theta - \cot\theta \right)\]

\[ = \sqrt{1 + \tan^2 \theta} + \log\left( \sqrt{1 + \frac{1}{\tan^2 \theta}} - \frac{1}{\tan\theta} \right)\]

\[\therefore I_1 = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C . . . . . \left( 2 \right)\]

From (1) and (2), we have

\[\sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C\]

\[ \Rightarrow \sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \frac{\sqrt{1 + x^2} - 1}{x} \right) + C\]

This is the solution of the given differential equation.
shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 2

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

x cos y dy = (xex log x + ex) dx


x cos2 y  dx = y cos2 x dy


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Define a differential equation.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


The function y = ex is solution  ______ of differential equation


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×