English

The Integrating Factor of the Differential Equation ( 1 − Y 2 ) D X D Y + Y X = a Y ( − 1 < Y < 1 ) is - Mathematics

Advertisements
Advertisements

Question

The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.

Options

  • \[\frac{1}{y^2 - 1}\]

  • \[\frac{1}{\sqrt{y^2 - 1}}\]

  • \[\frac{1}{1 - y^2}\]

  • \[\frac{1}{\sqrt{1 - y^2}}\]

MCQ
Fill in the Blanks

Solution

The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is `bbunderline(1/(sqrt(1 - "y"^2)))`.
Explanation:
We have,
\[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\]
\[\frac{dx}{dy} + \frac{y}{1 - y^2} x = \frac{ay}{1 - y^2}\]
\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get }\]
\[P = \frac{y}{1 - y^2} \]
\[Q = \frac{ay}{1 - y^2}\]
Now, 
\[ I . F . = e^{\int\frac{y}{1 - y^2}dy} \]
\[ = e^{- \frac{1}{2}\int\frac{- 2y}{1 - y^2}dy} \]
\[ = e^{- \frac{1}{2}\log\left| 1 - y^2 \right|} \]
\[ = e^{log\left| \frac{1}{\sqrt{1 - y^2}} \right|} \]
\[ = \frac{1}{\sqrt{1 - y^2}}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 144]

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

y ex/y dx = (xex/y + y) dy


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Solve

`dy/dx + 2/ x y = x^2`


y2 dx + (xy + x2)dy = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×