Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]
\[\Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{y}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{y}{1 + y^2}\]
\[ \Rightarrow dx = \left( - \frac{y}{1 + y^2} \right)dy\]
Integrating both sides, we get
\[\int dx = \int\left( - \frac{y}{1 + y^2} \right)dy\]
\[ \Rightarrow x = \int\left( - \frac{y}{1 + y^2} \right)dy\]
\[\text{ Putting }1 + y^2 = t, \text{ we get }\]
\[2y dy = dt\]
\[ \therefore x = - \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow x = - \frac{1}{2}\log\left| t \right| + C\]
\[ \Rightarrow x = - \frac{1}{2}\log\left| 1 + y^2 \right| + C\]
\[ \Rightarrow x + \frac{1}{2}\log\left| 1 + y^2 \right| = C\]
\[\text{ Hence, }x + \frac{1}{2}\log\left| 1 + y^2 \right| =\text{ C is the required solution }.\]
APPEARS IN
RELATED QUESTIONS
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
`xy dy/dx = x^2 + 2y^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation
`y (dy)/(dx) + x` = 0