Advertisements
Advertisements
Question
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Solution
Let the original count of bacteria be N and the count of bacteria at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = aP\]
\[ \Rightarrow \frac{dP}{P} = adt\]
\[ \Rightarrow \log \left| P \right| = at + C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| N \right| = C\]
\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right),\text{ we get }\]
\[\log \left| P \right| = \text{ at }+ \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| =\text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[\log \left| \frac{2N}{N} \right| = 6a\]
\[ \Rightarrow a = \frac{1}{6}\log \left| 2 \right|\]
\[\text{ Putting }a = \frac{1}{6}\log \left| 2 \right|\text{ in }\left( 2 \right),\text{ we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{t}{6}\log \left| 2 \right| . . . . . \left( 3 \right)\]
\[\text{ Putting }t = 18 \text{ in }\left( 3 \right)\text{ to find the bacteria after 18 hours, we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{18}{6} \log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = 3\log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = \log \left| 8 \right|\]
\[ \Rightarrow \frac{P}{N} = 8\]
\[ \Rightarrow P = 8N\]
APPEARS IN
RELATED QUESTIONS
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
(x2 − y2) dx − 2xy dy = 0
2xy dx + (x2 + 2y2) dy = 0
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The solution of the differential equation y1 y3 = y22 is
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the following differential equation.
`dy/dx + 2xy = x`
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
Solve
`dy/dx + 2/ x y = x^2`
y2 dx + (xy + x2)dy = 0
x2y dx – (x3 + y3) dy = 0
`dy/dx = log x`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve the differential equation `"dy"/"dx" + 2xy` = y
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation
`y (dy)/(dx) + x` = 0