English

D Y D X = Y Tan X , Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Solution

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = \tan x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\tan x dx\]
\[ \Rightarrow \log \left| y \right| = \log \left| \sec x \right| + C . . . . . (1)\]
We know that at x = 0 and y = 1 . 
Substituting the values of x and y in (1), we get
\[\log \left| 1 \right| = \log \left| 1 \right| + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[\log \left| y \right| = \log \left| \sec x \right| + 0\]
\[ \Rightarrow y = \sec x\]
\[\text{ Hence, }y = \sec x,\text{ where }x \in \left( \frac{- \pi}{2}, \frac{\pi}{2} \right),\text{ is the required solution .}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 45.1 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[2xy\frac{dy}{dx} = x^2 + y^2\]

y ex/y dx = (xex/y + y) dy


3x2 dy = (3xy + y2) dx


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


y2 dx + (x2 − xy + y2) dy = 0


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve:

(x + y) dy = a2 dx


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×