मराठी

D Y D X = Y Tan X , Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

उत्तर

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = \tan x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\tan x dx\]
\[ \Rightarrow \log \left| y \right| = \log \left| \sec x \right| + C . . . . . (1)\]
We know that at x = 0 and y = 1 . 
Substituting the values of x and y in (1), we get
\[\log \left| 1 \right| = \log \left| 1 \right| + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[\log \left| y \right| = \log \left| \sec x \right| + 0\]
\[ \Rightarrow y = \sec x\]
\[\text{ Hence, }y = \sec x,\text{ where }x \in \left( \frac{- \pi}{2}, \frac{\pi}{2} \right),\text{ is the required solution .}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 45.1 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{dy}{dx} = x \log x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

(1 − x2) dy + xy dx = xy2 dx


dy + (x + 1) (y + 1) dx = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


y2 dx + (x2 − xy + y2) dy = 0


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


The function y = ex is solution  ______ of differential equation


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×