Advertisements
Advertisements
प्रश्न
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
पर्याय
x2 = y
y2 = x
x2 = 2y
y2 = 2x
उत्तर
x2 = y
We have,
\[\frac{dy}{dx} = \frac{2y}{x}\]
\[ \Rightarrow \frac{1}{2} \times \frac{1}{y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int\frac{1}{y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log y = \log x + \log C\]
\[ \Rightarrow \log y^\frac{1}{2} - \log x = \log C\]
\[ \Rightarrow \log\left( \frac{\sqrt{y}}{x} \right) = \log C\]
\[ \Rightarrow \frac{\sqrt{y}}{x} = C\]
\[ \Rightarrow \sqrt{y} = Cx . . . . . \left( 1 \right)\]
\[\text{ As }\left( 1 \right)\text{ passes through (1, 1), we get }\]
\[ \therefore 1 = C\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\sqrt{y} = x\]
\[ \Rightarrow y = x^2 \]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
tan y dx + sec2 y tan x dy = 0
y (1 + ex) dy = (y + 1) ex dx
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve
`dy/dx + 2/ x y = x^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.