Advertisements
Advertisements
प्रश्न
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
पर्याय
y" + y' = 0
y" − ω2 y = 0
y" = −ω2 y
y" + y = 0
उत्तर
y" = −ω2 y
We have,
y = A cos ωt + B sin ωt .....(1)
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dt} = - A\omega \sin \omega t + B \omega \cos \omega t\] .....(2)
Differentiating both sides of (2) again with respect to x, we get
\[\frac{d^2 y}{d t^2} = - A \omega^2 \cos \omega t - B \omega^2 \sin \omega t\]
\[ \Rightarrow \frac{d^2 y}{d t^2} = - \omega^2 \left( A \cos \omega t + B \sin \omega t \right)\]
\[ \Rightarrow \frac{d^2 y}{d t^2} = - \omega^2 y ..........\left[ \text{Using }\left( 1 \right) \right]\]
\[ \therefore y'' = - \omega^2 y\]
APPEARS IN
संबंधित प्रश्न
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(ey + 1) cos x dx + ey sin x dy = 0
(1 − x2) dy + xy dx = xy2 dx
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.