मराठी

Cos Y D Y D X = E X , Y ( 0 ) = π 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]
बेरीज

उत्तर

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]
\[ \Rightarrow \cos y\ dy = e^x dx\]
Integrating both sides, we get
\[\int\cos y\ dy = \int e^x dx\]
\[ \Rightarrow \sin y = e^x + C . . . . . (1)\]
\[\text{ We know that at }x = 0, y = \frac{\pi}{2} . \]
Substituting the values of x and y in (1), we get
\[1 = 1 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[\sin y = e^x \]
\[ \Rightarrow y = \sin^{- 1} \left( e^x \right)\]
\[\text{ Hence, }y = \sin^{- 1} \left( e^x \right)\text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 45.4 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

x cos y dy = (xex log x + ex) dx


(ey + 1) cos x dx + ey sin x dy = 0


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


3x2 dy = (3xy + y2) dx


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Define a differential equation.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The differential equation satisfied by ax2 + by2 = 1 is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×