मराठी

The Differential Equation Satisfied by Ax2 + By2 = 1 is - Mathematics

Advertisements
Advertisements

प्रश्न

The differential equation satisfied by ax2 + by2 = 1 is

पर्याय

  • xyy2 + y12 + yy1 = 0

  • xyy2 + xy12 − yy1 = 0

  • xyy2 − xy12 + yy1 = 0

  • none of these

MCQ

उत्तर

xyy2 + xy12 − yy1 = 0

 

We have,
ax2 + by2 = 1                                    .....(1)
Differentiating both sides of (1) with respect to x, we get
\[2ax + 2by\frac{dy}{dx} = 0 . . . . . \left( 2 \right)\]
Differentiating both sides of (2) with respect to x, we get
\[2a + 2b \left( \frac{dy}{dx} \right)^2 + 2by\frac{d^2 y}{d x^2} = 0\]
\[ \Rightarrow 2b\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = - 2a\]
\[ \Rightarrow \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = - \frac{2a}{2b}\]
\[ \Rightarrow \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = - \left( - \frac{y}{x}\frac{dy}{dx} \right) .............\left[\text{Using (2)}\right]\]
\[ \Rightarrow x\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = y\frac{dy}{dx}\]
\[ \Rightarrow xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = y\frac{dy}{dx}\]
\[ \Rightarrow xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} = 0\]
\[ \Rightarrow xy y_2 + x \left( y_1 \right)^2 - y y_1 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 22 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy dy = (y − 1) (x + 1) dx


(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[xy\frac{dy}{dx} = x^2 - y^2\]

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×