मराठी

Solve the Following Differential Equation: Y ( 1 − X 2 ) D Y D X = X ( 1 + Y 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 

बेरीज

उत्तर

We have,
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{y}{1 + y^2}dy = \frac{x}{1 - x^2}dx\]
Integrating both sides ,
\[\int\frac{y}{1 + y^2}dy = \int\frac{x}{1 - x^2}dx\]
\[\text{ Substituting }1 + y^2 = t\text{ and }1 - x^2 = u \]
\[2ydy = dt\text{ and }- 2x dx = du\]
\[ \therefore \frac{1}{2}\int\frac{1}{t}dt = \frac{- 1}{2}\int\frac{1}{u}du\]
\[ \Rightarrow \frac{1}{2}\log \left| t \right| = - \frac{1}{2}\log \left| u \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\log \left| 1 + y^2 \right| = - \frac{1}{2}\log \left| 1 - x^2 \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\left[ \log \left| 1 + y^2 \right| + \log \left| 1 - x^2 \right| \right] = \log C\]
\[ \Rightarrow \log \left( \left| 1 + y^2 \right|\left| 1 - x^2 \right| \right) = 2 \log C\]
\[ \Rightarrow \left( 1 + y^2 \right)\left( 1 - x^2 \right) = C^2 \]
\[ \Rightarrow \left( 1 + y^2 \right)\left( 1 - x^2 \right) = C_1 , ...........\left(\text{where }C_1 = C^2\right) \]
\[\text{ Hence, }\left( 1 + y^2 \right)\left( 1 - x^2 \right) = C_1\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 38.2 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

C' (x) = 2 + 0.15 x ; C(0) = 100


(ey + 1) cos x dx + ey sin x dy = 0


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation y1 y3 = y22 is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve:

(x + y) dy = a2 dx


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×