मराठी

The Solution of the Differential Equation Y1 Y3 = Y22 is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation y1 y3 = y22 is

पर्याय

  • x = C1 eC2y + C3

  • y = C1 eC2x + C3

  • 2x = C1 eC2y + C3

  • none of these

MCQ

उत्तर

y = C1 eC2x + C3

 

\[y_1 y_3 = y_2^2 \]
\[\frac{y_3}{y_2} = \frac{y_2}{y_1}\]
\[ \Rightarrow \frac{\left( \frac{d^3 y}{d x^3} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \frac{\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \ln\left( \frac{d^2 y}{d x^2} \right) = \ln\left( \frac{dy}{dx} \right) + \ln C_4 \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = C_4 \frac{dy}{dx}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)} = \int C_4 dx\]
\[\ln\left( \frac{dy}{dx} \right) = C_4 x + C_5 \]
\[ \Rightarrow \frac{dy}{dx} = e^{C_4 x + C_5} \]
\[\int dy = \int \left( e^{C_4 x + C_5} \right) dx\]
\[y = \frac{e^{C_4 x + C_5}}{C_4} + C_6 \]
\[y = \frac{e^{C_4 x} . e^{C_5}}{C_4} + C_6 \]
\[ \Rightarrow y = C_1 e^{C_2 x} + C_3 \]
where, 
\[ C_1 = \frac{e^{C_5}}{C_4}\]
\[ C_4 = C_2 \]
\[ C_6 = C_3 \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 14 | पृष्ठ १४०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[5\frac{dy}{dx} = e^x y^4\]

\[x\frac{dy}{dx} + y = y^2\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`(x + y) dy/dx = 1`


The solution of `dy/dx + x^2/y^2 = 0` is ______


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×