मराठी

The Surface Area of a Balloon Being Inflated, Changes at a Rate Proportional to Time T. If Initially Its Radius is 1 Unit and After 3 Seconds It is 2 Units, Find the Radius After Time T. - Mathematics

Advertisements
Advertisements

प्रश्न

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.

बेरीज

उत्तर

Let r be the radius and S be the surface area of the balloon at any time t. Then,
\[S = 4\pi r^2 \]
\[ \Rightarrow \frac{dS}{dt} = 8\pi r \frac{dr}{dt} . . . . . \left( 1 \right)\]
\[\text{ Given: }\hspace{0.167em} \frac{dS}{dt}\alpha t\]
\[ \Rightarrow \frac{dS}{dt} = kt,\text{ where k is any constant }\]
\[\text{ Putting }\frac{dS}{dt} = kt\text{ in }(1), \text{ we get }\]
\[ \Rightarrow kt = 8\pi r \frac{dr}{dt}\]
\[kt dt = 8\pi r dr\]
Integrating both sides, we get
\[\int kt dt = \int8\pi r dr\]
\[ \Rightarrow \frac{k t^2}{2} = 8\pi \times \frac{r^2}{2} + C . . . . . (2)\]
\[\text{ At }t = 0 s, r = 1 \text{ unit and at }t = 3 s, r = 2\text{ units }..............\left(\text{Given} \right)\]
\[ \therefore 0 = 8\pi \times \frac{1}{2} + C\]
\[ \Rightarrow C = - 4\pi\]
And
\[\frac{9}{2}k = 8\pi \times 2 + C\]
\[ \Rightarrow \frac{9}{2}k = 12 \pi\]
\[ \Rightarrow k = \frac{8}{3}\pi\]
Substituting the values of C and k in (2), we get 
\[\frac{8 t^2}{6}\pi = 8\pi \times \frac{r^2}{2} - 4\pi\]
\[ \Rightarrow \frac{4 t^2}{3} = 4 r^2 - 4\]
\[ \Rightarrow \frac{t^2}{3} = r^2 - 1\]
\[ \Rightarrow r^2 = 1 + \frac{t^2}{3}\]
\[ \Rightarrow r = \sqrt{1 + \frac{1}{3} t^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 1 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = x \log x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


x cos2 y  dx = y cos2 x dy


(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

2xy dx + (x2 + 2y2) dy = 0


3x2 dy = (3xy + y2) dx


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the differential equation:

dr = a r dθ − θ dr


`xy dy/dx  = x^2 + 2y^2`


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×