Advertisements
Advertisements
प्रश्न
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
उत्तर
\[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\]
\[ \Rightarrow \frac{1}{1 + y}dy = \frac{- \cos x}{2 + \sin x}dx\]
\[ \Rightarrow \int\frac{1}{1 + y}dy = - \int\frac{\cos x}{2 + \sin x}dx\]
\[ \Rightarrow \log\left| 1 + y \right| = - \log\left| 2 + \sin x \right| + \log C\]
\[ \Rightarrow \log\left| \left( 1 + y \right)\left( 2 + \sin x \right) \right| = \log C\]
\[ \Rightarrow \left( 1 + y \right)\left( 2 + \sin x \right) = C . . . . . \left( 1 \right)\]
Now, y(0) = 1
\[\therefore \left( 1 + 1 \right)\left( 2 + 0 \right) = C\]
\[ \Rightarrow C = 4\]
Substituting the value of C in (1), we get
(1 + y)(2 + sinx) = 4
\[\Rightarrow 1 + y = \frac{4}{2 + \sin x}\]
\[ \Rightarrow y = \frac{4}{2 + \sin x} - 1\]
\[ \Rightarrow y\left( \frac{\pi}{2} \right) = \frac{4}{2 + \sin\left( \frac{\pi}{2} \right)} - 1\]
\[ = \frac{4}{3} - 1\]
\[ = \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
x cos y dy = (xex log x + ex) dx
(ey + 1) cos x dx + ey sin x dy = 0
tan y dx + sec2 y tan x dy = 0
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
x2 dy + y (x + y) dx = 0
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
y2 dx + (xy + x2)dy = 0
`xy dy/dx = x^2 + 2y^2`
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation y2dx + (xy + x2) dy = 0
The function y = ex is solution ______ of differential equation
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.