मराठी

In a Culture the Bacteria Count is 100000. the Number is Increased by 10% in 2 Hours. in How Many Hours Will the Count Reach 200000, If the Rate of Growth O - Mathematics

Advertisements
Advertisements

प्रश्न

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.

उत्तर

Let at any time the bacteria count be N . 
\[\text{ Given: }\]
\[\frac{dN}{dt}\alpha \text{ N }\]
\[ \Rightarrow \frac{dN}{dt} = \lambda N\]
\[ \Rightarrow \frac{1}{N}dN = \lambda dt\]
Integrating both sides, we get
\[\int\frac{1}{N}dN = \int\lambda dt\]
\[ \Rightarrow \ln N = \lambda t + \ln C . . . (1)\]
Given: 
\[\text{ at }t = 0, N = 100000\]
\[\text{therefore, }\ln C = \ln 100000\]
Putting the value in (1) we get, 
\[\ln N = \lambda t + \ln 100000\]
Also, at t = 2
\[N = 110000\]
Putting the values of t and N in (1), we get
\[\ln 110000 = 2\lambda + \ln 100000\]
\[ \Rightarrow \frac{1}{2}\ln \frac{11}{10} = \lambda\]
\[\text{ Substituting the values of }\ln C \text{ and }\lambda \text{ in (1), we get }\]
\[\ln N = \frac{1}{2}\ln \left( \frac{11}{10} \right)t + \ln 100000 . . . . (2)\]
\[\text{ When }N = 200000, \text{ let }t = T . \]
Substituting these values in (2), we get 
\[\ln 200000 = \frac{T}{2}\ln \left( \frac{11}{10} \right) + \ln 100000\]
\[ \Rightarrow \ln 2 = \frac{T}{2}\ln \frac{11}{10}\]
\[ \Rightarrow T = 2\frac{\ln 2}{\ln \frac{11}{10}}\]
\[\text{ Therefore, in }2\frac{\ln 2}{\ln \frac{11}{10}}\text{ hours, the count will reach }200000 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 57 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

xy (y + 1) dy = (x2 + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation satisfied by ax2 + by2 = 1 is


y2 dx + (x2 − xy + y2) dy = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×