मराठी

Y2 Dx + (X2 − Xy + Y2) Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

y2 dx + (x2 − xy + y2) dy = 0

बेरीज

उत्तर

We have,

\[ y^2 dx + \left( x^2 - xy + y^2 \right) dy = 0\]

\[\frac{dy}{dx} = \frac{- y^2}{x^2 - xy + y^2}\]

This is a homogeneous differential equation.

\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]

\[v + x\frac{dv}{dx} = \frac{- v^2 x^2}{x^2 - v x^2 + v^2 x^2}\]

\[ \Rightarrow v + x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2} - v\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{- v - v^3}{1 - v + v^2}\]

\[ \Rightarrow \frac{1 - v + v^2}{v + v^3}dv = - \frac{1}{x}dx\]

\[ \Rightarrow \frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1 + v^2}{v\left( 1 + v^2 \right)}dv - \int\frac{v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1}{v}dv - \int\frac{1}{1 + v^2}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \log \left| v \right| - \tan {}^{- 1} \left| v \right| = - \log \left| x \right| + \log C\]

\[ \Rightarrow \log \left| \frac{vx}{C} \right| = \tan^{- 1} v\]

\[ \Rightarrow \left| \frac{vx}{C} \right| = e^{\tan^{- 1} v} \]

\[\text{Putting }v = \frac{y}{x},\text{ we get}\]

\[ \Rightarrow \left| y \right| = C e^{\tan^{- 1} v} \]
\[\text{Hence, }\left| y \right| = C e^{\tan^{- 1} v}\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 20 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

y (1 + ex) dy = (y + 1) ex dx


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

A population grows at the rate of 5% per year. How long does it take for the population to double?


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


x2y dx – (x3 + y3) dy = 0


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×