मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation. y2 dx + (xy + x2 ) dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0

बेरीज

उत्तर

y2 dx + (xy + x2 ) dy = 0

∴ (xy + x2 ) dy = - y2 dx

∴`dy/dx = (-y^2)/(xy+x^2)`  ...(i)

Put y = tx  ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx`  ...(iii)

Substituting (ii) and (iii) in (i), we get

`t + x dt/dx  = (-t^2x^2)/(x.tx+x^2)` 

∴`t + x dt/dx  = (-t^2x^2)/(tx^2+x^2)`

∴  `t + x dt/dx  = (-t^2x^2)/(x^2(t+1)`

∴  ` x dt/dx  = (-t^2)/(t+1)-t`

∴ ` x dt/dx  = (-t^2-t^2-t)/(t+1)`

∴ ` x dt/dx  = (-(2t^2+t))/(t+1)`

∴ `(t+1)/(2t^2+t)dt = - 1/x dx`

Integrating on both sides, we get

`int (t+1)/(2t^2+t)dt = -int1/xdx`

∴`int (2t + 1 - t)/(t(2t+1)) dt = - int1/xdx`

∴`int1/tdt-int  1/ (2t+1) dt = -int1/ x dx`

∴ log | t | - `1/2` log |2t + 1| = - log |x| + log |c|

∴ 2log| t | - log |2t + 1| = - 2log |x| + 2 log |c|

∴ `2log |y/x | -log |(2y)/x+ 1 |= - 2log |x| + 2 log |c|`

∴ 2log |y| - 2log |x| - log |2y + x| + log |x|

= -2log |x| + 2log |c|

∴ log |y2 | + log |x| = log |c2 | + log |2y + x|

∴ log |y2 x| = log | c2 (x + 2y)|

∴ xy 2 = c2 (x + 2y)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.4 [पृष्ठ १६७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.4 | Q 1.2 | पृष्ठ १६७

संबंधित प्रश्‍न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×