मराठी

X Y D Y D X = Y + 2 , Y ( 2 ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]
बेरीज

उत्तर

We have, 
\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]
\[ \Rightarrow \frac{y}{y + 2}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{y}{y + 2}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{y + 2 - 2}{y + 2}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \int dy - 2\int\frac{1}{y + 2}dy = \log x + C\]
\[ \Rightarrow y - 2 \log \left| y + 2 \right| = \log \left| x \right| + C . . . . . (1) \]
It is given that at x = 2, y = 0 .
Substituting the values of x and y in (1), we get
\[ - 2\log 2 - \log 2 = C\]
\[ \Rightarrow - \log \left( 2^2 \times 2 \right) = C\]
\[ \Rightarrow C = - \log 8\]
Substituting the value of C in (1), we get
\[y - 2 \log \left| y + 2 \right| = \log \left| x \right| - \log 8\]
\[ \Rightarrow y - 2 \log \left| y + 2 \right| = \log \left| \frac{x}{8} \right|\]
\[\text{ Hence, }y - 2\log \left| y + 2 \right| = \log \left| \frac{x}{8} \right|\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 41 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x \log x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

xy dy = (y − 1) (x + 1) dx


(1 − x2) dy + xy dx = xy2 dx


(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


2xy dx + (x2 + 2y2) dy = 0


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`(x + y) dy/dx = 1`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation y2dx + (xy + x2) dy = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×