Advertisements
Advertisements
प्रश्न
(1 − x2) dy + xy dx = xy2 dx
उत्तर
We have,
\[\left( 1 - x^2 \right) dy + xy dx = x y^2 dx \]
\[ \Rightarrow \left( 1 - x^2 \right) dy = x y^2 dx - xy dx\]
\[ \Rightarrow \left( 1 - x^2 \right) dy = xy \left( y - 1 \right) dx\]
\[ \Rightarrow \frac{1}{y\left( y - 1 \right)} dy = \frac{x}{1 - x^2}dx\]
Integrating both sides, we get
\[\int\frac{1}{y\left( y - 1 \right)} dy = \int\frac{x}{1 - x^2}dx . . . . . (1)\]
Considering LHS of (1),
\[\text{ Let }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}\]
\[ \Rightarrow 1 = A\left( y - 1 \right) + By . . . . . (2) \]
\[\text{ Substituting }y = 1\text{ in }(2), \]
\[1 = B \]
\[\text{ Substituting }y = 0\text{ in }(2), \]
\[1 = - A\]
\[ \Rightarrow A = - 1\]
\[\text{ Substituting the values of A and B in }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}, \text{ we get }\]
\[\frac{1}{y\left( y - 1 \right)} = \frac{- 1}{y} + \frac{1}{y - 1}\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{- 1}{y}dy + \int\frac{1}{y - 1}dy\]
\[ = - \log \left| y \right| + \log \left| y - 1 \right| + C_1 \]
Now, considering RHS of (2), we have
\[\int\frac{x}{1 - x^2}dx\]
\[\text{ Here, putting }1 - x^2 = t,\text{ we get }\]
\[ - 2x dx = dt\]
\[ \therefore \int\frac{x}{1 - x^2}dx = \frac{- 1}{2}\int\frac{1}{t}dt\]
\[ = \frac{- 1}{2}\log \left| t \right| + C_2 \]
\[ = \frac{- 1}{2}\log \left| 1 - x^2 \right| + C_2 ........\left[ \because t = 1 - x^2 \right]\]
\[\text{ Now, substituting the value of }\int\frac{1}{y\left( y - 1 \right)}dy\text{ and }\int\frac{x}{1 - x^2}dx\text{ in }(1),\text{ we get }\]
\[ - \log \left| y \right| + \log \left| y - 1 \right| + C_1 = \frac{- 1}{2}\log \left| 1 - x^2 \right| + C_2 \]
\[ \Rightarrow - \log \left| y \right| + \log \left| y - 1 \right| = - \frac{1}{2}\log \left| 1 - x^2 \right| + C \]
where
\[C = C_2 - C_1\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(y + xy) dx + (x − xy2) dy = 0
3x2 dy = (3xy + y2) dx
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation:
`e^(dy/dx) = x`
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx