मराठी

(1 − X2) Dy + Xy Dx = Xy2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

(1 − x2) dy + xy dx = xy2 dx

बेरीज

उत्तर

We have,
\[\left( 1 - x^2 \right) dy + xy dx = x y^2 dx \]
\[ \Rightarrow \left( 1 - x^2 \right) dy = x y^2 dx - xy dx\]
\[ \Rightarrow \left( 1 - x^2 \right) dy = xy \left( y - 1 \right) dx\]
\[ \Rightarrow \frac{1}{y\left( y - 1 \right)} dy = \frac{x}{1 - x^2}dx\]
Integrating both sides, we get
\[\int\frac{1}{y\left( y - 1 \right)} dy = \int\frac{x}{1 - x^2}dx . . . . . (1)\]
Considering LHS of (1),
\[\text{ Let }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}\]
\[ \Rightarrow 1 = A\left( y - 1 \right) + By . . . . . (2) \]
\[\text{ Substituting }y = 1\text{ in }(2), \]
\[1 = B \]
\[\text{ Substituting }y = 0\text{ in }(2), \]
\[1 = - A\]
\[ \Rightarrow A = - 1\]
\[\text{ Substituting the values of A and B in }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}, \text{ we get }\]
\[\frac{1}{y\left( y - 1 \right)} = \frac{- 1}{y} + \frac{1}{y - 1}\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{- 1}{y}dy + \int\frac{1}{y - 1}dy\]
\[ = - \log \left| y \right| + \log \left| y - 1 \right| + C_1 \]
Now, considering RHS of (2), we have
\[\int\frac{x}{1 - x^2}dx\]
\[\text{ Here, putting }1 - x^2 = t,\text{ we get }\]
\[ - 2x dx = dt\]
\[ \therefore \int\frac{x}{1 - x^2}dx = \frac{- 1}{2}\int\frac{1}{t}dt\]
\[ = \frac{- 1}{2}\log \left| t \right| + C_2 \]
\[ = \frac{- 1}{2}\log \left| 1 - x^2 \right| + C_2 ........\left[ \because t = 1 - x^2 \right]\]
\[\text{ Now, substituting the value of }\int\frac{1}{y\left( y - 1 \right)}dy\text{ and }\int\frac{x}{1 - x^2}dx\text{ in }(1),\text{ we get }\]
\[ - \log \left| y \right| + \log \left| y - 1 \right| + C_1 = \frac{- 1}{2}\log \left| 1 - x^2 \right| + C_2 \]
\[ \Rightarrow - \log \left| y \right| + \log \left| y - 1 \right| = - \frac{1}{2}\log \left| 1 - x^2 \right| + C \]
where
\[C = C_2 - C_1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 21 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

3x2 dy = (3xy + y2) dx


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

`e^(dy/dx) = x`


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×