मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the differential equation:edydx=x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the differential equation:

`e^(dy/dx) = x`

बेरीज

उत्तर

`e^(dy/dx) = x`

∴ `dy/dx = log x`

∴ dy = log x dx

Integrating on both sides, we get

`int dy = int (logx)1 dx`

∴ `y = log x int1dx - int [ d/dx(logx)int1dx] dx`

= `x log x -int 1/x. x dx`

= `x log x -int dx`

∴ y = x log x - x + c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.03 | पृष्ठ १७२

संबंधित प्रश्‍न

Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


\[\sqrt{1 - x^4} dy = x\ dx\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation y1 y3 = y22 is


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×