मराठी

The value of dydx if y = |x – 1| + |x – 4| at x = 3 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.

पर्याय

  • –2

  • 0

  • 2

  • 4

MCQ
रिकाम्या जागा भरा

उत्तर

The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (April) Specimen Paper

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(1 − x2) dy + xy dx = xy2 dx


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

dr + (2r)dθ= 8dθ


The solution of `dy/dx + x^2/y^2 = 0` is ______


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve:

(x + y) dy = a2 dx


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×