Advertisements
Advertisements
प्रश्न
Statement 1: The intersection of two equivalence relations is always an equivalence relation.
Statement 2: The Union of two equivalence relations is always an equivalence relation.
Which one of the following is correct?
पर्याय
Statement 1 implies Statement 2.
Statement 2 implies Statement 1.
Statement 1 is true only if Statement 2 is true.
Statement 1 and 2 are independent of each other.
उत्तर
Statement 1 is true only if Statement 2 is true.
APPEARS IN
संबंधित प्रश्न
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Give an example of a relation which is reflexive and transitive but not symmetric ?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
If R is a symmetric relation on a set A, then write a relation between R and R−1.
Define a symmetric relation ?
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
Let A = {1, 2, 3} and B = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ________________ .
Mark the correct alternative in the following question:
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric
The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Mr. Shyam exercised his voting right in General Election-2019, then Mr. Shyam is related to which of the following?
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.