Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\left( x^2 - 1 \right)}\]
\[ \Rightarrow dy = \left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
\[ \Rightarrow y = \int\left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
\[ \Rightarrow y = \int\frac{1}{x\left( x - 1 \right)\left( x + 1 \right)}dx\]
\[\text{ Let }\frac{1}{x\left( x - 1 \right)\left( x + 1 \right)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}\]
\[ \Rightarrow 1 = A\left( x^2 - 1 \right) + B\left( x^2 + x \right) + C\left( x^2 - x \right)\]
\[ \Rightarrow 1 = \left( A + B + C \right) x^2 + \left( B - C \right)x - A\]
Equating the coefficients on both sides we get
\[A + B + C = 0 . . . . . \left( 1 \right)\]
\[B - C = 0 . . . . . \left( 2 \right)\]
\[A = - 1 . . . . . \left( 3 \right)\]
\[\text{ Solving }\left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right),\text{ we get }\]
\[A = - 1\]
\[B = \frac{1}{2}\]
\[C = \frac{1}{2}\]
\[ \therefore y = \frac{1}{2}\int\frac{1}{x - 1}dx - \int\frac{1}{x}dx + \frac{1}{2}\int\frac{1}{x + 1}dx\]
\[ = \frac{1}{2}\log\left| x - 1 \right| - \log\left| x \right| + \frac{1}{2}\log\left| x + 1 \right| + C\]
\[ = \frac{1}{2}\log\left| x - 1 \right| + \frac{1}{2}\log\left| x + 1 \right| - \log\left| x \right| + C\]
\[\text{ It is given that }y\left( 2 \right) = 0 . \]
\[ \therefore 0 = \frac{1}{2}\log\left| 2 - 1 \right| + \frac{1}{2}\log\left| 2 + 1 \right| - \log\left| 2 \right| + C\]
\[ \Rightarrow C = \log\left| 2 \right| - \frac{1}{2}\log\left| 3 \right|\]
Substituting the value of C, we get
\[y = \frac{1}{2}\log\left| x - 1 \right| + \frac{1}{2}\log\left| x + 1 \right| - \log\left| x \right| + \log\left| 2 \right| - \frac{1}{2}\log\left| 3 \right|\]
\[ \Rightarrow 2y = \log\left| x - 1 \right| + \log\left| x + 1 \right| - 2\log\left| x \right| + 2\log\left| 2 \right| - \log\left| 3 \right|\]
\[ \Rightarrow 2y = \log\left| x - 1 \right| + \log\left| x + 1 \right| - \log\left| x^2 \right| + \log 4 - \log 3\]
\[ \Rightarrow 2y = \log\frac{4\left( x - 1 \right)\left( x + 1 \right)}{3 x^2}\]
\[ \Rightarrow y = \frac{1}{2}\log\frac{4\left( x^2 - 1 \right)}{3 x^2}\]
\[\text{ Hence, } y = \frac{1}{2}\log\frac{4\left( x^2 - 1 \right)}{3 x^2}\text{ is the solution to the given differential equation }.\]
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`dy/dx + y` = 3
x2y dx – (x3 + y3) dy = 0
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation `("d"y)/("d"x) + y` = e−x
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.