मराठी

2 X D Y D X = 5 Y , Y ( 1 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

उत्तर

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]
\[ \Rightarrow \frac{2}{y}dy = \frac{5}{x} dx\]
Integrating both sides, we get 
\[2\int\frac{1}{y}dy = 5\int\frac{1}{x} dx\]
\[ \Rightarrow 2\log \left| y \right| = 5\log \left| x \right| + C . . . . . (1)\]
We know that at x = 1 and y = 1 . 
Substituting the values of x and y in (1), we get
\[2\log \left| 1 \right| = 5\log \left| 1 \right| + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[2 \log \left| y \right| = 5 \log \left| x \right| + 0\]
\[ \Rightarrow y = \left| x \right|^\frac{5}{2} \]
\[\text{ Hence, }y = \left| x \right|^\frac{5}{2}\text{ is the required solution .}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 45.2 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[x\frac{dy}{dx} + \cot y = 0\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

x2 dy + y (x + y) dx = 0


\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx + y = e ^-x`


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation:

`e^(dy/dx) = x`


Solve the differential equation:

dr = a r dθ − θ dr


y2 dx + (xy + x2)dy = 0


The function y = ex is solution  ______ of differential equation


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Solve: ydx – xdy = x2ydx.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×