Advertisements
Advertisements
प्रश्न
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
पर्याय
z = yn −1
z = yn
z = yn + 1
z = y1 − n
उत्तर
z = y1 − n
We have,
\[\frac{dy}{dx} + Py = Q y^n \]
\[ \Rightarrow y^{- n} \frac{dy}{dx} + P y^{1 - n} = Q . . . . . \left( 1 \right)\]
\[\text{ Put }z = y^{1 - n} \]
Integrating both sides with respect to x, we get
\[\frac{dz}{dx} = \left( 1 - n \right) y^{- n} \frac{dy}{dx}\]
\[ \Rightarrow y^{- n} \frac{dy}{dx} = \frac{1}{\left( 1 - n \right)}\frac{dz}{dx}\]
\[\text{ Now, }\left( 1 \right)\text{ becomes }\]
\[\frac{1}{\left( 1 - n \right)}\frac{dz}{dx} + Pz = Q\]
\[ \Rightarrow \frac{dz}{dx} + P\left( 1 - n \right)z = Q\left( 1 - n \right)\]
Which is linear form of differential equation .
Therefore, the given differential equation can be reduce to linear form by the substitution, \[z = y^{1 - n}\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
x cos y dy = (xex log x + ex) dx
(ey + 1) cos x dx + ey sin x dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Solve the following differential equation.
`dy/dx + 2xy = x`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
`dy/dx = log x`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: