मराठी

If the Marginal Cost of Manufacturing a Certain Item is Given by C' (X) = D C D X = 2 + 0.15 X. Find the Total Cost Function C (X), Given that C (0) = 100. - Mathematics

Advertisements
Advertisements

प्रश्न

If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 
बेरीज

उत्तर

We have, 
\[\frac{dC}{dx} = 2 + 0 . 15x\]
\[ \Rightarrow dC = \left( 2 + 0 . 15x \right)dx\]
Integrating both sides with respect to x, we get
\[C = 2x + \frac{0 . 15}{2} x^2 + K . . . . . \left( 1 \right)\]
\[\text{ At }C\left( 0 \right) = 100,\text{ we have }\]
\[100 = 2\left( 0 \right) + \frac{0 . 15}{2} \left( 0 \right)^2 + K\]
\[ \Rightarrow K = 100\]
Putting the value of T in (1), we get
\[C = 2x + \frac{0 . 15}{2} x^2 + 100\]
\[ \Rightarrow C = 0 . 075 x^2 + 2x + 100\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 8 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

(1 + x2) dy = xy dx


(1 − x2) dy + xy dx = xy2 dx


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


(x + y) (dx − dy) = dx + dy


2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The solution of `dy/dx + x^2/y^2 = 0` is ______


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


`xy dy/dx  = x^2 + 2y^2`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Solve: ydx – xdy = x2ydx.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×