Advertisements
Advertisements
प्रश्न
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
उत्तर
We have,
\[\frac{dC}{dx} = 2 + 0 . 15x\]
\[ \Rightarrow dC = \left( 2 + 0 . 15x \right)dx\]
Integrating both sides with respect to x, we get
\[C = 2x + \frac{0 . 15}{2} x^2 + K . . . . . \left( 1 \right)\]
\[\text{ At }C\left( 0 \right) = 100,\text{ we have }\]
\[100 = 2\left( 0 \right) + \frac{0 . 15}{2} \left( 0 \right)^2 + K\]
\[ \Rightarrow K = 100\]
Putting the value of T in (1), we get
\[C = 2x + \frac{0 . 15}{2} x^2 + 100\]
\[ \Rightarrow C = 0 . 075 x^2 + 2x + 100\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
(1 + x2) dy = xy dx
(1 − x2) dy + xy dx = xy2 dx
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
(x + y) (dx − dy) = dx + dy
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The solution of `dy/dx + x^2/y^2 = 0` is ______
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
`xy dy/dx = x^2 + 2y^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve: ydx – xdy = x2ydx.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?