Advertisements
Advertisements
Question
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Solution
We have,
\[y = \frac{a}{x + a}\]
\[ \Rightarrow xy + ay = a\]
\[ \Rightarrow xy = a\left( 1 - y \right)\]
\[ \Rightarrow \frac{xy}{1 - y} = a\]
\[ \Rightarrow \frac{1 - y}{xy} = \frac{1}{a} . . . . . \left( 1 \right)\]
given differential equation: \[x\frac{dy}{dx} + y = y^2\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{xy\left( 0 - \frac{dy}{dx} \right) - \left( 1 - y \right)\left( x\frac{dy}{dx} + y \right)}{\left( xy \right)^2} = 0\]
\[ \Rightarrow xy\left( - \frac{dy}{dx} \right) - \left( 1 - y \right)\left( x\frac{dy}{dx} + y \right) = 0\]
\[ \Rightarrow - xy\frac{dy}{dx} - x\frac{dy}{dx} - y + xy\frac{dy}{dx} + y^2 = 0\]
\[ \Rightarrow - x\frac{dy}{dx} - y + y^2 = 0\]
\[ \Rightarrow x\frac{dy}{dx} + y = y^2\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
RELATED QUESTIONS
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(1 + x2) dy = xy dx
dy + (x + 1) (y + 1) dx = 0
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
y ex/y dx = (xex/y + y) dy
(x + 2y) dx − (2x − y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.