Advertisements
Advertisements
Question
`dy/dx = log x`
Solution
`dy/dx = log x`
∴ dy = log x dx
Integrating on both sides, we get
∫ 1 dy =∫ (log x × 1) dx
∴ `y = log x ( int1dx ) – int [ d/dx (logx) int 1dx] `
∴ `y = log x(x) – int (1/x xx x ) dx`
= x log x – ∫ 1dx
∴ y = x log x – x + c
APPEARS IN
RELATED QUESTIONS
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
y2 dx + (x2 − xy + y2) dy = 0
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2