Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]
\[\Rightarrow \frac{1}{r}dr = - t dt\]
Integrating both sides, we get
\[\int\frac{1}{r}dr = - \int t dt\]
\[ \Rightarrow \log \left| r \right| = \frac{- t^2}{2} + C . . . . (1)\]
\[Given: t = 0, r = r_0 . \]
Substituting the values of x and y in (1), we get
\[\log \left| r_0 \right| = 0 + C\]
\[ \Rightarrow C = \log \left| r_0 \right|\]
Substituting the value of C in (1), we get
\[\log \left| r \right| = \frac{- t^2}{2} + \log \left| r_0 \right| \]
\[ \Rightarrow \log \left| r \right| - \log \left| r_0 \right| = \frac{- t^2}{2}\]
\[ \Rightarrow \log \left| \frac{r}{r_0} \right| = \frac{- t^2}{2}\]
\[ \Rightarrow r = r_0 e^\frac{- t^2}{2} \]
\[\text{ Hence, }r = r_0 e^\frac{- t^2}{2}\text{ is the required solution }.\]
APPEARS IN
RELATED QUESTIONS
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
xy (y + 1) dy = (x2 + 1) dx
(ey + 1) cos x dx + ey sin x dy = 0
x cos2 y dx = y cos2 x dy
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Solve the following differential equation.
xdx + 2y dx = 0
The solution of `dy/ dx` = 1 is ______
Solve the differential equation:
`e^(dy/dx) = x`
y dx – x dy + log x dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve: ydx – xdy = x2ydx.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: