Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = \left( x + y \right)^2 \]
Let x + y = v
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = v^2 \]
\[ \Rightarrow \frac{dv}{dx} = v^2 + 1\]
\[ \Rightarrow \frac{1}{v^2 + 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{1}{v^2 + 1}dv = \int dx\]
\[ \Rightarrow \tan^{- 1} v = x + C\]
\[ \Rightarrow v = \tan\left( x + C \right)\]
\[ \Rightarrow x + y = \tan\left( x + C \right)\]
APPEARS IN
RELATED QUESTIONS
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
x cos y dy = (xex log x + ex) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the differential equation:
`e^(dy/dx) = x`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
If `y = log_2 log_2(x)` then `(dy)/(dx)` =