English

D Y D X = Sec ( X + Y ) - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \sec\left( x + y \right)\]
Sum

Solution

We have,

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{1}{\cos\left( x + y \right)}\]

Let x + y = v

\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]

\[ \therefore \frac{dv}{dx} - 1 = \frac{1}{\cos v}\]

\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v + 1}{\cos v}\]

\[ \Rightarrow \frac{\cos v}{\cos v + 1}dv = dx\]

Integrating both sides, we get

\[\int\frac{\cos v}{\cos v + 1}dv = \int dx\]

\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{1 - \cos^2 v}dv = \int dx\]

\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{\sin^2 v}dv = \int dx\]

\[ \Rightarrow \int\frac{\cos v - \cos^2 v}{\sin^2 v}dv = \int dx\]

\[ \Rightarrow \int\left( \cot v\ cosec + v - \cot^2 v \right)dv = \int dx\]

\[ \Rightarrow \int\left( \cot v\ cosec\ v - {cosec}^2 v + 1 \right)dv = \int dx\]

\[ \Rightarrow - cosec\ v + \cot v + v = x + C\]

\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + x + y = x + C\]

\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + y = C\]

\[ \Rightarrow \frac{- 1 + \cos \left( x + y \right)}{\sin \left( x + y \right)} + y = C\]

\[ \Rightarrow - \tan\left( \frac{x + y}{2} \right) + y = C\]

\[ \Rightarrow y = \tan\left( \frac{x + y}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.08 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.08 | Q 7 | Page 66

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The differential equation satisfied by ax2 + by2 = 1 is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


The solution of `dy/dx + x^2/y^2 = 0` is ______


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation:

`e^(dy/dx) = x`


Solve the differential equation:

dr = a r dθ − θ dr


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×