Advertisements
Advertisements
Question
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solution
\[ \frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0 \]
\[\frac{dy}{dx} + y\cot x = 2\cos x . . . . \left( 1 \right) \]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \cot x\text{ and }Q = 2\cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cot x\ dx} \]
\[ = e^{\log{\sin x}} \]
\[ = \sin x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \sin x, \text{ we get }\]
\[\sin x\left( \frac{dy}{dx} + y\cot x \right) = 2\sin x\cos x\]
\[ \Rightarrow \sin x\frac{dy}{dx} + y\cos x = \sin2x\]
Integrating both sides with respect to x, we get
\[y\sin x = \int\sin 2x dx + C\]
\[ \Rightarrow y\sin x = - \frac{\cos2x}{2} + C . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 0 \]
\[ \therefore 0 \times \sin\left( \frac{\pi}{2} \right) = - \frac{cos\pi}{2} + C\]
\[ \Rightarrow C = - \frac{1}{2}\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y\sin x = - \frac{\cos2x}{2} - \frac{1}{2}\]
\[ \Rightarrow 2y\sin x = - \left( 1 + \cos2x \right)\]
\[ \Rightarrow 2y\sin x = - 2 \cos^2 x\]
\[ \Rightarrow y = - \cot x\cos x\]
\[\text{ Hence, }y = - \cot x\cos x\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the differential equation:
`e^(dy/dx) = x`
Solve the differential equation:
dr = a r dθ − θ dr
y dx – x dy + log x dx = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?