English

Solve the Following Initial Value Problem:- D Y D X + Y Cot X = 2 Cos X , Y ( π 2 ) = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]

Sum

Solution

\[ \frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0 \]
\[\frac{dy}{dx} + y\cot x = 2\cos x . . . . \left( 1 \right) \]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \cot x\text{ and }Q = 2\cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cot x\ dx} \]
\[ = e^{\log{\sin x}} \]
\[ = \sin x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \sin x, \text{ we get }\]
\[\sin x\left( \frac{dy}{dx} + y\cot x \right) = 2\sin x\cos x\]
\[ \Rightarrow \sin x\frac{dy}{dx} + y\cos x = \sin2x\]
Integrating both sides with respect to x, we get
\[y\sin x = \int\sin 2x dx + C\]
\[ \Rightarrow y\sin x = - \frac{\cos2x}{2} + C . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 0 \]
\[ \therefore 0 \times \sin\left( \frac{\pi}{2} \right) = - \frac{cos\pi}{2} + C\]
\[ \Rightarrow C = - \frac{1}{2}\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y\sin x = - \frac{\cos2x}{2} - \frac{1}{2}\]
\[ \Rightarrow 2y\sin x = - \left( 1 + \cos2x \right)\]
\[ \Rightarrow 2y\sin x = - 2 \cos^2 x\]
\[ \Rightarrow y = - \cot x\cos x\]
\[\text{ Hence, }y = - \cot x\cos x\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 37.11 | Page 107

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the differential equation:

`e^(dy/dx) = x`


Solve the differential equation:

dr = a r dθ − θ dr


y dx – x dy + log x dx = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×