मराठी

Solve the Following Initial Value Problem:- D Y D X + Y Cot X = 2 Cos X , Y ( π 2 ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]

बेरीज

उत्तर

\[ \frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0 \]
\[\frac{dy}{dx} + y\cot x = 2\cos x . . . . \left( 1 \right) \]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \cot x\text{ and }Q = 2\cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cot x\ dx} \]
\[ = e^{\log{\sin x}} \]
\[ = \sin x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \sin x, \text{ we get }\]
\[\sin x\left( \frac{dy}{dx} + y\cot x \right) = 2\sin x\cos x\]
\[ \Rightarrow \sin x\frac{dy}{dx} + y\cos x = \sin2x\]
Integrating both sides with respect to x, we get
\[y\sin x = \int\sin 2x dx + C\]
\[ \Rightarrow y\sin x = - \frac{\cos2x}{2} + C . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 0 \]
\[ \therefore 0 \times \sin\left( \frac{\pi}{2} \right) = - \frac{cos\pi}{2} + C\]
\[ \Rightarrow C = - \frac{1}{2}\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y\sin x = - \frac{\cos2x}{2} - \frac{1}{2}\]
\[ \Rightarrow 2y\sin x = - \left( 1 + \cos2x \right)\]
\[ \Rightarrow 2y\sin x = - 2 \cos^2 x\]
\[ \Rightarrow y = - \cot x\cos x\]
\[\text{ Hence, }y = - \cot x\cos x\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 37.11 | पृष्ठ १०७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

xy (y + 1) dy = (x2 + 1) dx


\[x\frac{dy}{dx} + y = y^2\]

x cos2 y  dx = y cos2 x dy


xy dy = (y − 1) (x + 1) dx


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

(x + y) (dx − dy) = dx + dy


\[x\frac{dy}{dx} = x + y\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Define a differential equation.


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve the differential equation:

`e^(dy/dx) = x`


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×