मराठी

Given that dydxedydx=e-2x and y = 0 when x = 5. Find the value of x when y = 3. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.

बेरीज

उत्तर

Given equation is `"dy"/"dx"` = e–2y

⇒ `"dy"/"e"^(-2y)` = dx

⇒ `"e"^(2y) * "d"y` = dx

Integrating both sides, we get

`int "e"^(2y) "d"y = int "d"x`

⇒ `1/2 "e"^(2y)` = x + c

Put y = 0 and x = 5

⇒ `1/2 "e"^0` = 5 + c

⇒ c = `1/2 - 5 = - 9/2`

Now putting y = 3, we get

`1/2 "e"^6 = x - 9/2`

⇒ x = `1/2 "e"^6 + 9/2`

Hence the required value of x =`1/2 ("e"^6 + 9)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 3 | पृष्ठ १९३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[5\frac{dy}{dx} = e^x y^4\]

x cos2 y  dx = y cos2 x dy


(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


y ex/y dx = (xex/y + y) dy


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the differential equation:

`e^(dy/dx) = x`


x2y dx – (x3 + y3) dy = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×