मराठी

Sin ( D Y D X ) = K ; Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]
बेरीज

उत्तर

We have, 
\[\sin \frac{dy}{dx} = k\]
\[ \Rightarrow \frac{dy}{dx} = \sin^{- 1} k\]
\[ \Rightarrow dy = \left\{ \sin^{- 1} k \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left( \sin^{- 1} k \right) dx\]
\[ \Rightarrow y = x \sin^{- 1} k + C . . . . . \left( 1 \right)\]
\[ \text{ It is given that }y\left( 0 \right) = 1 . \]
\[ \therefore 1 = 0 \times \sin^{- 1} k + C\]
\[ \Rightarrow C = 1\]
\[\text{ Substituting the value of C in }\left( 1 \right),\text{ we get }\]
\[y = x \sin^{- 1} k + 1\]
\[ \Rightarrow y - 1 = x \sin^{- 1} k \]
\[\text{ Hence, }y - 1 = x \sin^{- 1} \text{ k is the solution to the given differential equation.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 22 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

xy (y + 1) dy = (x2 + 1) dx


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Define a differential equation.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation satisfied by ax2 + by2 = 1 is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


x2y dx – (x3 + y3) dy = 0


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


The function y = ex is solution  ______ of differential equation


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×