Advertisements
Advertisements
प्रश्न
(x + 2y) dx − (2x − y) dy = 0
उत्तर
\[\left( x + 2y \right)dx - \left( 2x - y \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{2x - y}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{2x - vx}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{2 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{2 - v}\]
\[ \Rightarrow \frac{2 - v}{1 + v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2 - v}{1 + v^2}dv = \int\frac{1}{x}dx . . . . . (1)\]
\[ \Rightarrow \int\frac{2}{1 + v^2}dv - \int\frac{v}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2}{1 + v^2}dv - \frac{1}{2}\int\frac{2v}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow 2 \tan^{- 1} v - \frac{1}{2}\log \left| 1 + v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow 2 \tan^{- 1} v = \log \left| x \right| + \log C + \log \left| \left( 1 + v^2 \right)^\frac{1}{2} \right|\]
\[ \Rightarrow 2 \tan^{- 1} v = \log \left| Cx\sqrt{1 + v^2} \right|\]
\[ \Rightarrow \left| Cx\sqrt{1 + v^2} \right| = e^{2 \tan^{- 1} v} \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| Cx\sqrt{1 + \left( \frac{y}{x} \right)^2} \right| = e^{2 \tan^{- 1} \left( \frac{y}{x} \right)} \]
\[ \Rightarrow C\sqrt{x^2 + y^2} = e^{2 \tan^{- 1} \left( \frac{y}{x} \right)} \]
\[\text{ Hence, }\sqrt{x^2 + y^2} = K e^{- 2 \tan^{- 1} \frac{y}{x}}\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
xy (y + 1) dy = (x2 + 1) dx
(1 − x2) dy + xy dx = xy2 dx
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the differential equation:
dr = a r dθ − θ dr
`dy/dx = log x`
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.