English

D Y D X = ( X + Y + 1 ) 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

Solution

We have, 

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2 \]

\[\text{ Putting }x + y + 1 = v\]

\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]

\[ \therefore \frac{dv}{dx} - 1 = v^2 \]

\[ \Rightarrow \frac{dv}{dx} = v^2 + 1\]

\[ \Rightarrow \frac{1}{v^2 + 1}dv = dx\]

Integrating both sides, we get

\[\int\frac{1}{v^2 + 1}dv = \int dx\]

\[ \Rightarrow \tan^{- 1} v = x + C\]

\[ \Rightarrow \tan^{- 1} \left( x + y + 1 \right) = x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.08 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.08 | Q 1 | Page 66

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = 1 - x + y - xy\]

(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

(x2 − y2) dx − 2xy dy = 0


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Define a differential equation.


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation:

`e^(dy/dx) = x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×