English

Find the Equation of the Curve Passing Through the Point (0, 1) If the Slope of the Tangent to the Curve at Each of Its Point is Equal to the Sum of the Abscissa and the Product of the - Mathematics

Advertisements
Advertisements

Question

Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.

Solution

According to the question,
\[\frac{dy}{dx} = x + xy\]
\[\Rightarrow \frac{dy}{dx} - xy = x\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q, \text{ we get }\]
\[P = - x\]
\[Q = x\]
Now,
\[I . F . = e^{- \int xdx} = e^{- \frac{x^2}{2}} \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y e^{- \frac{x^2}{2}} = \int x e^{- \frac{x^2}{2}} dx + C\]
\[ \Rightarrow y e^{- \frac{x^2}{2}} = I + C\]
Now,
\[I = \int x e^{- \frac{x^2}{2}} dx\]
\[\text{ Putting }\frac{- x^2}{2} = t,\text{ we get }\]
\[ - xdx = dt\]
\[ \therefore I = - \int e^t dt\]
\[ \Rightarrow I = - e^t \]
\[ \Rightarrow I = - e^\frac{- x^2}{2} \]
\[ \therefore y e^{- \frac{x^2}{2}} = - e^\frac{- x^2}{2} + C \]
\[\text{ Since the curve passes throught the point }\left( 0, 1 \right),\text{ it satisfies the equation of the curve . }\]
\[ \Rightarrow 1 e^0 = - e^0 + C\]
\[ \Rightarrow C = 2\]
Putting the value of C in the equation of the curve, we get
\[y e^{- \frac{x^2}{2}} = - e^\frac{- x^2}{2} + 2\]
\[ \Rightarrow y = - 1 + 2 e^\frac{x^2}{2}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.11 [Page 136]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.11 | Q 31 | Page 136

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[x\frac{dy}{dx} + \cot y = 0\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


y ex/y dx = (xex/y + y) dy


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×