मराठी

Solve the differential equation dydxdydx = 1 + x + y2 + xy2, when y = 0, x = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.

बेरीज

उत्तर

Given equation is `"dy"/"dx"` = 1 + x + y2 + xy2 

⇒ `"dy"/"dx"` = 1(1 + x) + y2(1 + x)

⇒ `"dy"/"dx"` = (1 + x)(1 + y2)

⇒ `"dy"/(1 + y^2)` = (1 + x)dx

Integrating both sides, we get

`int "dy"/(1 + y^2) = int(1 + x)"d"x`

⇒ `tan^-1y = x + x^2/2 + "c"`

Put x = 0 and y = 0

We get tan–1(0) = 0 + 0 + c

⇒ c = 0

∴ tan–1y = `x + x^2/2`

⇒ y = `tan(x + x^2/2)`

Hence, the required solution is y = `tan(x + x^2/2)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 9 | पृष्ठ १९३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


The solution of `dy/ dx` = 1 is ______


y2 dx + (xy + x2)dy = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×