मराठी

D Y D X = E X + Y + E Y X 3 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

उत्तर

We have,
\[\frac{dy}{dx} = e^{x + y} + e^y x^3 \]
\[ \Rightarrow \frac{dy}{dx} = e^x e^y + e^y x^3 \]
\[ \Rightarrow \frac{dy}{dx} = e^y \left( e^x + x^3 \right)\]
\[ \Rightarrow \left( e^x + x^3 \right) dx = \frac{1}{e^y}dy\]
Integrating both sides, we get 
\[\int\left( e^x + x^3 \right) dx = \int\frac{1}{e^y}dy\]
\[ \Rightarrow e^x + \frac{x^4}{4} = - e^{- y} + C\]
\[ \Rightarrow e^x + e^{- y} + \frac{x^4}{4} = C\]
\[\text{ Hence, } e^x + e^{- y} + \frac{x^4}{4} =\text{ C is the required solution .} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 15 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

xy (y + 1) dy = (x2 + 1) dx


\[x\frac{dy}{dx} + y = y^2\]

(ey + 1) cos x dx + ey sin x dy = 0


y (1 + ex) dy = (y + 1) ex dx


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×