मराठी

Integrating Factor of the Differential Equation Cos X D Y D X + Y Sin X = 1 , is - Mathematics

Advertisements
Advertisements

प्रश्न

Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is

पर्याय

  • cos x

  • tan x

  • sec x

  • sin x

MCQ

उत्तर

sec x

 

We have,

\[\cos x\frac{dy}{dx} + y \sin x = 1\]

Dividing both sides by cos x, we get

\[\frac{dy}{dx} + \frac{\sin x}{\cos x}y = \frac{1}{\cos x}\]

\[ \Rightarrow \frac{dy}{dx} + \left( \tan x \right)y = \frac{1}{\cos x}\]

\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]

\[P = \tan x\]

\[Q = \frac{2}{\cos x}\]

Now,

\[I . F . = e^{\int\tan xdx} \]

\[ = e^{log\left( sec x \right)} \]

\[ = \sec x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 40 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

x cos2 y  dx = y cos2 x dy


xy dy = (y − 1) (x + 1) dx


dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} + 1 = e^{x + y}\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


y2 dx + (xy + x2)dy = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×