Advertisements
Advertisements
प्रश्न
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
उत्तर
We have,
\[x\left( x + 1 \right)\frac{dy}{dx} - y = x\left( x + 1 \right)\]
\[ \Rightarrow \frac{dy}{dx} - \frac{y}{x\left( x + 1 \right)} = 1\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = - \frac{1}{x\left( x + 1 \right)}\]
\[Q = 1\]
Now,
\[I . F . = e^{- \int\frac{1}{x\left( x + 1 \right)}dx} \]
\[ = e^{- \int\frac{1}{x} - \frac{1}{x + 1}dx} \]
\[ = e^{- \log\left| \frac{x}{x + 1} \right|} \]
\[ = \frac{x + 1}{x} \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow \left( \frac{x + 1}{x} \right)y = \int\frac{x + 1}{x} dx + C\]
\[ \Rightarrow \left( \frac{x + 1}{x} \right)y = \int dx + \int\frac{1}{x}dx + C\]
\[ \Rightarrow \left( \frac{x + 1}{x} \right)y = x + \log \left| x \right| + C\]
\[\text{ Since the curve passes throught the point }\left( 1, 0 \right), \text{ it satisfies the equation of the curve . }\]
\[ \Rightarrow \left( \frac{1 + 1}{1} \right)0 = 1 + \log \left| 1 \right| + C\]
\[ \Rightarrow C = - 1\]
Putting the value of C in the equation of the curve, we get
\[\left( \frac{x + 1}{x} \right)y = x + \log \left| x \right| - 1\]
\[ \Rightarrow y = \frac{x}{x + 1}\left( x + \log \left| x \right| - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = AeBx is a solution of the differential equation
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
xy (y + 1) dy = (x2 + 1) dx
x cos y dy = (xex log x + ex) dx
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `"dy"/"dx" + 2xy` = y