हिंदी

The integrating factor of the differential equation dydxdydx(xlogx)+y = 2logx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.

विकल्प

  • ex 

  • log x

  • log (log x)

  • x

MCQ
रिक्त स्थान भरें

उत्तर

The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is log x.

Explanation:

Given equation can be written as `"dy"/"dx" + y/(xlogx) = 2/x`.

Therefore, I.F. = `"e"^(int 1/(xlogx)  "d"x)`

= `"e"^(log (logx))`

= log x.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Solved Examples [पृष्ठ १८८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Solved Examples | Q 17 | पृष्ठ १८८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

(1 − x2) dy + xy dx = xy2 dx


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

y ex/y dx = (xex/y + y) dy


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation:

`e^(dy/dx) = x`


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×