Advertisements
Advertisements
प्रश्न
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
विकल्प
ex
log x
log (log x)
x
उत्तर
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is log x.
Explanation:
Given equation can be written as `"dy"/"dx" + y/(xlogx) = 2/x`.
Therefore, I.F. = `"e"^(int 1/(xlogx) "d"x)`
= `"e"^(log (logx))`
= log x.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
(1 − x2) dy + xy dx = xy2 dx
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the differential equation:
`e^(dy/dx) = x`
Solve the differential equation `"dy"/"dx" + 2xy` = y