English

5 D Y D X = E X Y 4 - Mathematics

Advertisements
Advertisements

Question

\[5\frac{dy}{dx} = e^x y^4\]

Solution

We have, 
\[5\frac{dy}{dx} = e^x y^4 \]
\[ \Rightarrow \frac{5}{y^4}dy = e^x dx\]
Integrating both sides, we get
\[\int\frac{5}{y^4}dy = \int e^x dx\]
\[ \Rightarrow \frac{- 5}{3 y^3} = e^x + C\]
\[\text{ Hence, }\frac{- 5}{3 y^3} = e^x +\text{ C is the required solution .}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 6 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

x cos y dy = (xex log x + ex) dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(ey + 1) cos x dx + ey sin x dy = 0


tan y dx + sec2 y tan x dy = 0


\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Define a differential equation.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×