English

Which of the Following is the Integrating Factor of (X Log X) D Y D X + Y = 2 Log X? - Mathematics

Advertisements
Advertisements

Question

Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?

Options

  • x

  • ex

  • log x

  • log (log x)

MCQ

Solution

log x

 

We have,

\[\left( x \log x \right)\frac{dy}{dx} + y = 2 \log x\]

Dividing both sides by (x log x) we get,

\[\frac{dy}{dx} + \frac{y}{x \log x} = 2\frac{\log x}{x \log x}\]

\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\]

\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x}\]

\[\text{ Comparing with }\frac{dy}{dx} + Py = Q \text{ we get, }\]

\[P = \frac{1}{x \log x} \text{ and }Q = \frac{2}{x}\]
\[\text{ Now, }I . F = e^{\int P\ dx} = e^{\int\frac{1}{x\log x}dx} \]

\[ = e^{log\left( \log x \right)} \]

\[ = \log x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 38 | Page 143

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

(y2 + 1) dx − (x2 + 1) dy = 0


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The solution of the differential equation y1 y3 = y22 is


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the differential equation:

dr = a r dθ − θ dr


x2y dx – (x3 + y3) dy = 0


`xy dy/dx  = x^2 + 2y^2`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `"dy"/"dx" + 2xy` = y


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×