Advertisements
Advertisements
Question
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Options
x
ex
log x
log (log x)
Solution
log x
We have,
\[\left( x \log x \right)\frac{dy}{dx} + y = 2 \log x\]
Dividing both sides by (x log x) we get,
\[\frac{dy}{dx} + \frac{y}{x \log x} = 2\frac{\log x}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x}\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q \text{ we get, }\]
\[P = \frac{1}{x \log x} \text{ and }Q = \frac{2}{x}\]
\[\text{ Now, }I . F = e^{\int P\ dx} = e^{\int\frac{1}{x\log x}dx} \]
\[ = e^{log\left( \log x \right)} \]
\[ = \log x\]
APPEARS IN
RELATED QUESTIONS
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
x2 dy + y (x + y) dx = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The solution of the differential equation y1 y3 = y22 is
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the differential equation:
dr = a r dθ − θ dr
x2y dx – (x3 + y3) dy = 0
`xy dy/dx = x^2 + 2y^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx" + 2xy` = y
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: