English

Choose the correct alternative. The order and degree of [1+(dydx)3]23=8d3ydx3 are respectively. - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.

Options

  • 3, 1

  • 1, 3

  • 3, 3

  • 1, 1

MCQ

Solution

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively - 3, 3

Explanation

`[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3`

Taking cube on both sides, we get

`[ 1+ (dy/dx)^3]^(2/3) = 8^3 ((d^3y)/dx^3)^3`

∴ By definition of order and degree,

Order : 3; Degree : 3

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Miscellaneous Exercise 8 [Page 171]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 1.02 | Page 171

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)` = cos 3x + sin 3x


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`


\[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x \sin \left( \frac{d^2 y}{d x^2} \right)\]

\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

\[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0\]

Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is


Write the sum of the order and degree of the differential equation

\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]


Determine the order and degree (if defined) of the following differential equation:-

y"' + y2 + ey' = 0


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.


If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


y2 = (x + c)3 is the general solution of the differential equation ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×