English

For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation. y=ex(acosx+bsinx) : d2ydx2-2dydx+2y=0 - Mathematics

Advertisements
Advertisements

Question

For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = e^x (acos x + b sin x)  :  (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`

Sum

Solution

Given function y = ex (a cos x + b sin x)

On differentiating

`dy/dx = e^x (a sin x + b cos x) + e^x (a cos x + b sin x)`

`= e^x [(a + b) cos x + (b - a) sin x]`

On differentiating again,

`(d^2y)/dx^2 = e^x [- (a + b) sin x + (b - a) cos x] + e^x [(a + b) cos x + (b - a) sin x]`

`(d^2y)/(dx^2)= e^x [2b cos x - 2a sin x]`

L.H.S. ⇒ `(d^2y)/(dx^2) - 2 dy/dx + 2y`

`= e^x [2b cos x - 2a sin x] - 2e^x [(a + b) cos x + (b - a) sin x] + 2e^x [a cos x + b sin x] = 0`

`= e^x [(2b - 2a - 2b + 2a)] cos x + (- 2a - 2b + 2a + 2b) sin x`

`= "e"^x xx 0 + 0 xx sin x = 0`  R.H.S.

Hence the given function is a solution to the differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.7 [Page 420]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.7 | Q 2.2 | Page 420

RELATED QUESTIONS

Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively 

(A) 2, 3

(B) 3, 2

(C) 7, 2

(D) 3, 7


Determine the order and degree (if defined) of the differential equation:

`(d^4y)/(dx^4) + sin(y^("')) = 0`


Determine the order and degree (if defined) of the differential equation:

`((ds)/(dt))^4 + 3s  (d^2s)/(dt^2) = 0`


The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.


\[s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s\]

\[2\frac{d^2 y}{d x^2} + 3\sqrt{1 - \left( \frac{dy}{dx} \right)^2 - y} = 0\]

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]


Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]


Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]


Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]


If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then


Write the sum of the order and degree of the differential equation

\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "dy"/"dx" + "x" = sqrt(1 + ("d"^3"y")/"dx"^3)`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`


Determine the order and degree of the following differential equation:

`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


Determine the order and degree of the following differential equations.

`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


State whether the following is True or False:

The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.


Choose the correct alternative:

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


Order and degree of differential equation are always ______ integers


The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.


The third order differential equation is ______ 


The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.


If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×