Advertisements
Advertisements
Question
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
Solution
y"' + 2y" + y' = 0
The highest order derivative in the given equation is y''' and its power is 1.
Therefore, the given differential equation is of third order and first degree.
i.e., Order = 3 and degree = 1
APPEARS IN
RELATED QUESTIONS
Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively
(A) 2, 3
(B) 3, 2
(C) 7, 2
(D) 3, 7
Determine the order and degree (if defined) of the differential equation:
`(d^4y)/(dx^4) + sin(y^("')) = 0`
Determine the order and degree (if defined) of the differential equation:
y' + 5y = 0
Determine the order and degree (if defined) of the differential equation:
( y′′′) + (y″)3 + (y′)4 + y5 = 0
Determine the order and degree (if defined) of the differential equation:
y′′′ + 2y″ + y′ = 0
Determine the order and degree (if defined) of the differential equation:
y′ + y = ex
(y'')2 + (y')3 + sin y = 0
Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]
Write the order of the differential equation of all non-horizontal lines in a plane.
Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
Determine the order and degree (if defined) of the following differential equation:-
\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Choose the correct option from the given alternatives:
The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.
Determine the order and degree of the following differential equations.
`((d^3y)/dx^3)^(1/6) = 9`
Fill in the blank:
Order and degree of a differential equation are always __________ integers.
State whether the following is True or False:
The order of highest derivative occurring in the differential equation is called degree of the differential equation.
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.
The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.
Find the general solution of the following differential equation:
`(dy)/(dx) = e^(x-y) + x^2e^-y`
The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.
The order and degree of the differential equation `sqrt(dy/dx) - 4 dy/dx - 7x` = 0 are ______.
The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.
The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.
Find the order and degree of the differential equation
`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`